next page previous page table of contents home

Hevelius has the Phoenix constellation at the other end of the sky compared to Crater and we ought to add the Phoenix stars to our list. Below I can count to 23 stars with Greek letters, but I will not bother to regard λ¹ and λ² as separate items:

ι 23h 35m 04.53s 23h 35.076m 358.3
θ 23h 39m 27.92s 23h 39.465m 359.4
σ 23h 47m 15.99s 23h 47.267m 361.4
π 23h 58m 55.72s 23h 58.929m 364.4
τ 00h 01m 04.60s 00h 01.077m 364.9
Sirrah 00h 08m 23.17s 00h 08.386m 1.5
ε 00h 09m 24.54s 00h 09.409m 1.8
κ 00h 26m 12.12s 00h 26.202m 6.0
α 00h 26m 16.87s 00h 26.281m 6.0
λ 00h 31m 24.86s 00h 31.414m 7.3
μ 00h 41m 19.58s 00h 41.326m 9.9
ξ 00h 41m 46.30s 00h 41.772m 10.0
η 00h 43m 21.24s 00h 43.35m 10.4
ρ 00h 50m 41.13s 00h 50.686m 12.2
β 01h 06m 05.11s 01h 06.085m 16.1
υ 01h 07m 47.83s 01h 07.797m 16.6
ζ 01h 08m 23.06s 01h 08.384m 16.7
ν 01h 15m 10.57s 01h 15.176m 18.4
γ 01h 28m 21.94s 01h 28.366m 21.8
δ 01h 31m 14.98s 01h 31.250m 22.5
ψ 01h 53m 38.82s 01h 53.647m 28.2
φ 01h 54m 22.06s 01h 54.368m 28.4
χ 02h 01m 42.40s 02h 01.707m 30.2

The right ascension positions of the earliest stars in Phoenix are in the 24th hour and therefore not possible to coordinate with the earliest glyphs in the C text. But we can try to add them to the G text. (In K the heliacal stars were probably rising in the interval 5h - 16h.)

Scheat Pegasi β Pegasi 2.44 27° 49′ N 23h 01m 350.3 H
Markab Pegasi α Pegasi 2.49 14° 56′ N 23h 02m 350.5 ACH
  φ Aquarii 4.22 06° 03′ S 23h 12m 353.0  
  ψ Aquarii 4.24 09° 05′ S 23h 13m 353.4  
  χ Aquarii 4.93 07° 44′ S 23h 14m 353.6  
Kerb τ Pegasi 4.58 23° 28′ N 23h 18m 354.6  
  ι Phoenicis 4.69 42° 37′ S 23h 33m 358.3  
Alrai γ Cephei 3.21 70° 20′ N 23h 37m 359.4  
  θ Phoenicis 6.07 46° 38′ S 23h 37m 359.4  
  ω Aquarii 4.49 14° 33′ S 23h 40m 360.2  
  σ Phoenicis 5.18 50° 14′ S 23h 45m 361.4  
  π Phoenicis 5.13 52° 45′ S 23h 57m 364.4  
  τ Phoenicis 5.71 48° 49′ S 23h 59m 364.9  
Gb3-2 Gb3-3 Gb3-4 (295) Gb3-5 Gb3-6 (*360)
no star listed ι Phoenicis (357.3) Alrai, θ Phoenicis (358.4) ω Aquarii (359.2) σ Phoenicis (360.4)
March 12 13 14 15 16 (440)
Saad Al Saud 2 3 4 5 6 (304)
Gb3-7 Gb3-8 Gb3-9 (300) Gb3-10 Gb3-11 (*365)
no stars listed π Phoenicis (363.4) τ Phoenicis (363.9) Caph, Sirrah (0.5)
March 17 18 19 March 20 (444) 0h (365.25)
Saad Al Saud 7 8 9 10 11 (309)

There is a dot in front in Gb3-3, where the first Phoenix star (ι) rose heliacally. From March 13 to 0h there are 8 days. I have counted the right ascension days from Rogo in Gb6-26, and when after a full cycle time returns to Gb6-26 the date has changed from March 21 to July 6, moved ahead with 7h:

Gb6-25 (*106) Gb6-26 (409) Gb6-27 Gb6-28
Alzirr (105.7), Muliphein (105.8) 7h (106.53)  no stars listed 
Wezen (107.1)
July 5 (186) 6 7 8
Al Tuwaibe' 10 11 12 13 (53)

By adding 7h to 24h the cycle becomes 31h, and because 31 is a prime number it is necessary to 'recycle' 24h for 31 years in order to return to the place of origin. This is the same structure as when 24 hours in a day will accumulate to 24 * 31 = 744 hours in a month like July and August.

Perhaps this structure explains why 372 days evidently was an important number. 31 * 12 = 372 days and 12 * 31 (= 744 / 2) could describe the number of daytime hours in a month.